|
发表于 2025-9-8 19:59:41
|
显示全部楼层
能帮忙看下吗?我解压之后运行,RuntimeError: CUDA error: no kernel image is available for execution on the device CUDA kernel errors might be asynchronously reported at some other API call, so the stacktrace below might be incorrect. For debugging consider passing CUDA_LAUNCH_BLOCKING=1 Compile with `TORCH_USE_CUDA_DSA` to enable device-side assertions.; 在这个日志之前,启动的时候提示这些:C:\work\soft\FireRedTTS-V2\fireredtts\modules\codec\speaker.py:1040: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. model.load_state_dict(torch.load(ckpt_path), strict=True) C:\work\soft\FireRedTTS-V2\python\Lib\site-packages\torch\cuda\__init__.py:230: UserWarning: NVIDIA GeForce RTX 5080 Laptop GPU with CUDA capability sm_120 is not compatible with the current PyTorch installation. The current PyTorch install supports CUDA capabilities sm_50 sm_60 sm_61 sm_70 sm_75 sm_80 sm_86 sm_90. If you want to use the NVIDIA GeForce RTX 5080 Laptop GPU GPU with PyTorch, please check the instructions at https://pytorch.org/get-started/locally/ warnings.warn( C:\work\soft\FireRedTTS-V2\fireredtts\fireredtts.py:51: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. sd = torch.load(self.gpt_path, map_location=device)["model"] C:\work\soft\FireRedTTS-V2\python\Lib\site-packages\torch\nn\utils\weight_norm.py:134: FutureWarning: `torch.nn.utils.weight_norm` is deprecated in favor of `torch.nn.utils.parametrizations.weight_norm`. WeightNorm.apply(module, name, dim) C:\work\soft\FireRedTTS-V2\fireredtts\fireredtts.py:62: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. sd = torch.load(self.token2wav_path, map_location="cpu") Removing weight norm... Running on local URL: http://127.0.0.1:7860 To create a public link, set `share=True` in `launch()`. |
|